Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
1.
FEMS Microbiol Lett ; 3712024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196139

RESUMO

Reduction of CO2 to formate utilizing formate dehydrogenases (FDHs) has been attempted biologically and electrochemically. However, the conversion efficiency is very low due to the low energy potential of electron donors and/or electron competition with other electron acceptors. To overcome such a low conversion efficiency, I focused on a direct electron transfer between two unrelated redox enzymes for the efficient reduction of CO2 and utilized the quantum mechanical magnetic properties of the [Fe-S] ([iron-sulfur]) cluster to develop a novel electron path. Using this electron path, we connected non-interacting carbon monoxide dehydrogenase and FDH, constructing a synthetic carbon monoxide:formate oxidoreductase as a single functional enzyme complex in the previous study. Here, a theoretical hypothesis that can explain the direct electron transfer phenomenon based on the magnetic properties of the [Fe-S] cluster is proposed.


Assuntos
Dióxido de Carbono , Elétrons , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Oxirredução , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo
2.
Biotechnol J ; 19(1): e2300330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180313

RESUMO

NAD+ -dependent formate dehydrogenase (FDH) catalyzes the conversion of formate and NAD+ to produce carbon dioxide and NADH. The reaction is biotechnologically important because FDH is widely used for NADH regeneration in various enzymatic syntheses. However, major drawbacks of this versatile enzyme in industrial applications are its low activity, requiring its utilization in large amounts to achieve optimal process conditions. Here, FDH from Bacillus simplex (BsFDH) was characterized for its biochemical and catalytic properties in comparison to FDH from Pseudomonas sp. 101 (PsFDH), a commonly used FDH in various biocatalytic reactions. The data revealed that BsFDH possesses high formate oxidizing activity with a kcat value of 15.3 ± 1.9 s-1 at 25°C compared to 7.7 ± 1.0 s-1 for PsFDH. At the optimum temperature (60°C), BsFDH exhibited 6-fold greater activity than PsFDH. The BsFDH displayed higher pH stability and a superior tolerance toward sodium azide and H2 O2 inactivation, showing a 200-fold higher Ki value for azide inhibition and remaining stable in the presence of 0.5% H2 O2 compared to PsFDH. The application of BsFDH as a cofactor regeneration system for the detoxification of 4-nitrophenol by the reaction of HadA, which produced a H2 O2 byproduct was demonstrated. The biocatalytic cascades using BsFDH demonstrated a distinct superior conversion activity because the system tolerated H2 O2 well. Altogether, the data showed that BsFDH is a robust enzyme suitable for future application in industrial biotechnology.


Assuntos
Bacillus , Formiato Desidrogenases , NAD , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Catálise , Formiatos
3.
Biochimie ; 216: 194-204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925050

RESUMO

NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) from the bacterium Staphylococcus aureus (SauFDH) plays an important role in the vital activity of this bacterium, especially in the form of biofilms. Understanding its mechanism and structure-function relationship can help to find special inhibitors of this enzyme, which can be used as medicines against staphylococci. The gene encoding SauFDH was successfully cloned and expressed in our laboratory. This enzyme has the highest kcat value among the described FDHs and also has a high temperature stability compared to other enzymes of this group. That is why it can also be considered as a promising catalyst for NAD(P)H regeneration in the processes of chiral synthesis with oxidoreductases. In this work, the principle of rational design was used to improve SauFDH catalytic efficiency. After bioinformatics analysis of the amino acid sequence in combination with visualization of the enzyme structure (PDB 6TTB), 9 probable catalytically significant positions 119, 194, 196, 217-219, 246, 303 and 323 were identified, and 16 new mutant forms of SauFDH were obtained and characterized by kinetic experiments. The introduction of the mentioned substitutions in most cases leads to a decrease in stability at high temperatures and an increase at low temperatures. Substitutions in positions 119 and 194 lead to a decreasing of KMNAD+. A consistent decrease in the Michaelis constant in the Ile-Val-Ala-Gly series at position 119 of SauFDH is shown. KMNAD+ of mutant SauFDH V119G decreased by 27 times compared to the wild-type enzyme. After substitution Phe194Val KMNAD + decreased by 3.5 times. The catalytic constant for this mutant form practically did not change. For this mutant form, an increase in catalytic efficiency was demonstrated through the use of a multicomponent buffer system.


Assuntos
Formiato Desidrogenases , NAD , NAD/metabolismo , Mutagênese Sítio-Dirigida , Formiato Desidrogenases/genética , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , Cinética
4.
J Biol Chem ; 300(1): 105550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072055

RESUMO

Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.


Assuntos
Formiato Desidrogenases , Mathanococcus , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Flavinas/metabolismo , Formiatos/metabolismo , Isoformas de Proteínas/metabolismo
5.
Biophys Chem ; 304: 107128, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922819

RESUMO

Engineering of reaction media is an exciting alternative for modulating kinetic properties of biocatalytic reactions. We addressed the combined effect of an aqueous two-phase system (ATPS) and high hydrostatic pressure on the kinetics of the Candida boidinii formate dehydrogenase-catalyzed oxidation of formate to CO2. Pressurization was found to lead to an increase of the binding affinity (decrease of KM, respectively) and a decrease of the turnover number, kcat. The experimental approach was supported using thermodynamic modeling with the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) equation of state to predict the liquid-liquid phase separation and the molecular crowding effect of the ATPS on the kinetic properties. The ePC-SAFT was able to quantitatively predict the KM-values of the substrate in both phases at 1 bar as well as up to a pressure of 1000 bar. The framework presented enables significant advances in bioprocess engineering, including the design of processes with significantly fewer experiments and trial-and-error approaches.


Assuntos
Formiato Desidrogenases , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Biocatálise , Cinética , Candida
6.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003259

RESUMO

Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the ß-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.


Assuntos
NAD , Rhodobacter capsulatus , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Elétrons , Oxirredução , Oxidantes , Niacinamida , Cinética
7.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-37850386

RESUMO

The formate dehydrogenase (FDH) is regarded as a universal stress protein involved in various plant abiotic stress responses. This study aims to ascertain GmFDH function in conferring tolerance to aluminum (Al) stress. The bioinformatics analysis demonstrates that GmFDH from Tamba black soybean (TBS) encodes FDH. Quantitative reverse transcription-PCR (qRT-PCR) showed that GmFDH expression was induced by Al stress with a concentration-time-specific pattern. Moreover, Al stress promotes formate content and activates FDH activity. Further studies revealed that GmFDH overexpression alleviated root growth of tobacco under Al stress inhibition and reduced Al and ROS accumulation in roots. In addition, transgenic tobacco had much more root citrate exudation and much higher activity of antioxidant enzymes than wild type. Moreover, under Al stress, NtMATE and NtALS3 expression showed no changes in wild type and overexpression lines, suggesting that here the known Al-resistant mechanisms are not involved. However citrate synthase activity is higher in transgenic tobaccos than that of wild type, which might be the reason for citrate secretion increase. Thus, the increased Al tolerance of GmFDH overexpression lines is likely attributable to enhanced activities of antioxidant enzymes and promoting citrate secretion. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms and suggest a possible new route towards the improvement of plant growth under Al stress.


Assuntos
Alumínio , /genética , Alumínio/toxicidade , Alumínio/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Antioxidantes , Plantas Geneticamente Modificadas , Citratos/metabolismo , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
World J Microbiol Biotechnol ; 39(12): 352, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864750

RESUMO

Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Catálise , Formiatos/metabolismo
9.
Metab Eng ; 80: 1-11, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673324

RESUMO

Shewanella oneidensis MR-1 (S. oneidensis MR-1) has been shown to benefit from microbial electrosynthesis (MES) due to its exceptional electron transfer efficiency. In this study, genes involved in both extracellular electron uptake (EEU) and intracellular CO2 conversion processes were examined and regulated to enhance MES performance. The key genes identified for MES in the EEU process were mtrB, mtrC, mtrD, mtrE, omcA and cctA. Overexpression of these genes resulted in 1.5-2.1 times higher formate productivity than that of the wild-type strains (0.63 mmol/(L·µg protein)), as 0.94-1.61 mmol/(L·µg protein). In the intracellular CO2 conversion process, overexpression of the nadE, nadD, nadR, nadV, pncC and petC genes increased formate productivity 1.3-fold-3.4-fold. Moreover, overexpression of the formate dehydrogenase genes fdhA1, fdhB1 and fdhX1 in modified strains led to a 2.3-fold-3.1-fold increase in formate productivity compared to wild-type strains. The co-overexpression of cctA, fdhA1 and nadV in the mutant strain resulted in 5.59 times (3.50 mmol/(L·µg protein)) higher formate productivity than that of the wild-type strains. These findings revealed that electrons of MES derived from the electrode were utilized in the energy module for synthesizing ATP and NADH, followed by the synthesis of formate in formate dehydrogenase by the combinatorial effects of ATP, NADH, electrons and CO2. The results provide new insights into the mechanism of MES in S. oneidensis MR-1 and pave the way for genetic improvements that could facilitate the further application of MES.


Assuntos
Proteínas de Bactérias , Shewanella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Dióxido de Carbono/metabolismo , Shewanella/genética , Shewanella/metabolismo , Formiatos/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Angew Chem Int Ed Engl ; 62(45): e202311981, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712590

RESUMO

Massive efforts are invested in developing innovative CO2 -sequestration strategies to counter climate change and transform CO2 into higher-value products. CO2 -capture by reduction is a chemical challenge, and attention is turned toward biological systems that selectively and efficiently catalyse this reaction under mild conditions and in aqueous solvents. While a few reports have evaluated the effectiveness of isolated bacterial formate dehydrogenases as catalysts for the reversible electrochemical reduction of CO2 , it is imperative to explore other enzymes among the natural reservoir of potential models that might exhibit higher turnover rates or preferential directionality for the reductive reaction. Here, we present electroenzymatic catalysis of formylmethanofuran dehydrogenase, a CO2 -reducing-and-fixing biomachinery isolated from a thermophilic methanogen, which was deposited on a graphite rod electrode to enable direct electron transfer for electroenzymatic CO2 reduction. The gas is reduced with a high Faradaic efficiency (109±1 %), where a low affinity for formate prevents its electrochemical reoxidation and favours formate accumulation. These properties make the enzyme an excellent tool for electroenzymatic CO2 -fixation and inspiration for protein engineering that would be beneficial for biotechnological purposes to convert the greenhouse gas into stable formate that can subsequently be safely stored, transported, and used for power generation without energy loss.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/química , Oxirredução , Catálise , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo
11.
Protein Eng Des Sel ; 362023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-37658768

RESUMO

Oxidoreductases catalyze essential redox reactions, and many require a diffusible cofactor for electron transport, such as NAD(H). Non-canonical cofactor analogs have been explored as a means to create enzymatic reactions that operate orthogonally to existing metabolism. Here, we aimed to engineer the formate dehydrogenase from Candid boidinii (CbFDH) for activity with the non-canonical cofactor nicotinamide adenine dinucleotide 3'-phosphate (3'-NADP(H)). We used PyRosetta, the Cofactor Specificity Reversal Structural Analysis and Library Design (CSR-SALAD), and structure-guided saturation mutagenesis to identify mutations that enable CbFDH to use 3'-NADP+. Two single mutants, D195A and D195G, had the highest activities with 3'-NADP+, while the double mutant D195G/Y196S exhibited the highest cofactor selectivity reversal behavior. Steady state kinetic analyses were performed; the D195A mutant exhibited the highest KTS value with 3'-NADP+. This work compares the utility of computational approaches for cofactor specificity engineering while demonstrating the engineering of an important enzyme for novel non-canonical cofactor selectivity.


Assuntos
Formiato Desidrogenases , Oxirredutases , NADP/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , NAD/química
12.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513211

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.


Assuntos
Formiato Desidrogenases , Metaloproteínas , Formiato Desidrogenases/metabolismo , Oxirredução , Metaloproteínas/química , Molibdênio/química , Domínio Catalítico , Pteridinas/química , Coenzimas/química
13.
Chembiochem ; 24(20): e202300390, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37455264

RESUMO

Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) constitute major hydrogen donors for oxidative/reductive bio-transformations. NAD(P)H regeneration systems coupled with formate dehydrogenases (FDHs) represent a dreamful method. However, most of the native FDHs are NAD+ -dependent and suffer from insufficient reactivity compared to other enzymatic tools, such as glucose dehydrogenase. An efficient and competitive NADP+ -utilizing FDH necessitates the availability and robustness of NADPH regeneration systems. Herein, we report the engineering of a new FDH from Candida dubliniensis (CdFDH), which showed no strict NAD+ preference by a structure-guided rational/semi-rational design. A combinatorial mutant CdFDH-M4 (D197Q/Y198R/Q199N/A372S/K371T/▵Q375/K167R/H16L/K159R) exhibited 75-fold intensification of catalytic efficiency (kcat /Km ). Moreover, CdFDH-M4 has been successfully employed in diverse asymmetric oxidative/reductive processes with cofactor total turnover numbers (TTNs) ranging from 135 to 986, making it potentially useful for NADPH-required biocatalytic transformations.


Assuntos
Formiato Desidrogenases , NAD , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Engenharia de Proteínas/métodos , Oxirredução
14.
Biochemistry ; 62(15): 2314-2324, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463347

RESUMO

The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.


Assuntos
Formiato Desidrogenases , NAD , NAD/metabolismo , Formiato Desidrogenases/metabolismo , Ribose , Catálise , Ânions , Fosfatos , Cinética
15.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513391

RESUMO

Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Dióxido de Carbono/química , Biocatálise , Biotecnologia , Formiatos , Formiato Desidrogenases/metabolismo , Anidrases Carbônicas/química
16.
Chemistry ; 29(47): e202301113, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294852

RESUMO

The enzymatic reduction of carbon dioxide presents limited applicability due to denaturation and the impossibility of biocatalyst recovery; disadvantages that can be minimized by its immobilization. Here, a recyclable bio-composed system was constructed by in-situ encapsulation under mild conditions using formate dehydrogenase in a ZIF-8 metalorganic framework (MOF) in the presence of magnetite. The partial dissolution of ZIF-8 in the enzyme's operation medium can be relatively inhibited if the concentration of magnetic support used exceeds 10 mg mL-1 . The bio-friendly environment for immobilization does not harm the integrity of the biocatalyst, and the production of formic acid is improved 3.4-fold compared to the free enzyme because the MOFs act as concentrators of the enzymatic cofactor. Furthermore, the bio-composed system retains 86 % of its activity after a long time of five cycles, thus indicating an excellent magnetic recovery and a good reusability.


Assuntos
Formiato Desidrogenases , Oxirredução , Dióxido de Carbono/química , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Cápsulas
17.
Food Res Int ; 164: 112418, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738023

RESUMO

Cronobacter sakazakii (C. sakazakii), a food-borne pathogen, can infect neonates, elderly and immunocompromised populations with a high infection and mortality rate. However, the specific molecular mechanism of its motility, biofilm formation, cell adhesion, and desiccation resistance remains unclear, and flagellum hook associated protein (FlgK), a main component of the flagellar complex, may be an important determinant of its virulence and desiccation resistance. In this study, the flgK mutant strain (ΔflgK) was constructed using the homologous recombination method, and the cpflgK complementary strain was obtained by gene complementation, followed by analysis of the difference between the wild type (WT), mutant, and complementary strains in mobility, biofilm formation, cell adhesion, and desiccation resistance. Results indicated that flgK gene played a positive role in motility and invasion, with no significant effect on biofilm formation. Interestingly, flagellar assembly gene deletion showed increased resistance of C. sakazakii to dehydration. The mechanism underlying the negative correlation of flgK gene with dehydration resistance was further investigated by using the high-throughput sequencing technology to compare the gene expression between WT and ΔflgK strains after drying. The results revealed up-regulation in the expression of 54 genes, including genes involved in osmosis and formate dehydrogenase, while down-regulation in the expression of 50 genes, including genes involved in flagellum hook and nitrate reductase. qRT-PCR analysis of the RNA-seq data further indicated that the flgK gene played an important role in the environmental stress resistance of C. sakazakii by up-regulating the formate dehydrogenase, betaine synthesis, and arginine deiminase pathways, due to dynamic proton imbalance caused by lack of flagella. This study facilitates our understanding of the roles of flgK in motion-related functions and the molecular mechanism of desiccation resistance in C. sakazakii.


Assuntos
Proteínas de Bactérias , Cronobacter sakazakii , Humanos , Recém-Nascido , Idoso , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cronobacter sakazakii/metabolismo , Desidratação , Dessecação , Formiato Desidrogenases/metabolismo
18.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838526

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzed the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. While in the reaction of formate oxidation, the product is CO2, which exits the active site via a hydrophobic channel; bicarbonate is formed as the first intermediate during the reaction at the active site. Other than what has been previously reported, bicarbonate is formed after an oxygen atom transfer reaction, transferring the oxygen from water to formate and a subsequent proton-coupled electron transfer or hydride transfer reaction involving the sulfido ligand as acceptor.


Assuntos
Bicarbonatos , Formiato Desidrogenases , Formiato Desidrogenases/metabolismo , Oxigênio , Oxirredução , Molibdênio/química , Formiatos , Dióxido de Carbono/química
19.
Environ Microbiol Rep ; 15(2): 129-141, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36779246

RESUMO

Acetogens are anaerobes using Wood-Ljungdahl pathway (WLP) as the terminal electron acceptor for both assimilation and dissimilation of CO2 and widely distributed in diverse habitats. However, their habitat adaptation is often unclear. Given that bacterial genome evolution is often the result of environmental selective pressure, hereby we analysed gene copy number, phylogeny and selective pressure of genes involved in WLP within known genomes of 43 species to study the habitat adaption of gastrointestinal acetogens. The gene copy number of formate dehydrogenase (FDH) in gastrointestinal acetogens was much lower than that of non-gastrointestinal acetogens, and in five cases, no FDH genes were found in the genomes of five gastrointestinal acetogens, but that of the other WLP genes showed no difference. The evolutionary pattern of FDH genes was significantly different from that of the other enzymes. Additionally, seven positively selected sites were only identified in the fdhF genes, which means fdhF mutations favoured their adaptation. Collectively, reduction or loss of FDH genes and their evolutionary pattern as well as positive selection in gastrointestinal acetogens indicated their adaptation to formate-rich habitats, implying that FDH genes catalysing CO2 reduction to formate as the first step of methyl branch of WLP may have evolved independently.


Assuntos
Formiato Desidrogenases , Madeira , Madeira/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Formiatos/metabolismo
20.
Angew Chem Int Ed Engl ; 62(6): e202212224, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36465058

RESUMO

Metal-based formate dehydrogenases are molybdenum or tungsten-dependent enzymes that catalyze the interconversion between formate and CO2 . According to the current consensus, the metal ion of the catalytic center in its active form is coordinated by 6 S (or 5 S and 1 Se) atoms, leaving no free coordination sites to which formate could bind to the metal. Some authors have proposed that one of the active site ligands decoordinates during turnover to allow formate binding. Another proposal is that the oxidation of formate takes place in the second coordination sphere of the metal. Here, we have used electrochemical steady-state kinetics to elucidate the order of the steps in the catalytic cycle of two formate dehydrogenases. Our results strongly support the "second coordination sphere" hypothesis.


Assuntos
Formiato Desidrogenases , Molibdênio , Formiato Desidrogenases/metabolismo , Molibdênio/química , Domínio Catalítico , Formiatos/química , Oxirredução , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...